
Journal of Computational Physics 207 (2005) 173–191

www.elsevier.com/locate/jcp
Fast algorithms for spectral collocation with
non-periodic boundary conditions

W. Lyons a,*,1, H.D. Ceniceros a,2, S. Chandrasekaran b,1, M. Gu c

a Department of Mathematics, University of California, Santa Barbara, CA 93106-3080, USA
b Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, USA

c Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA

Received 24 November 2004; accepted 13 January 2005

Available online 16 February 2005
Abstract

We present a method for the numerical solution of partial differential equations using spectral collocation. By

employing a structured representation of linear operators we are able to use fast algorithms without being restricted

to periodic boundary conditions. The underlying ideas are introduced and developed in the context of linearly implicit

methods for stiff equations. We show how different boundary conditions may be applied and illustrate the technique on

the Allen–Cahn equation and the diffusion equation.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Pseudospectral methods; Chebyshev collocation; Fast algorithms; Fast direct solver; Semi-separable; Boundary conditions
1. Introduction

An important factor in the rise in popularity of spectral methods is the availability of fast transform

methods. Due to the global nature of the basis functions employed, matrix representations of differential
operators in the spatial domain are not sparse and are costly to work with. Working in a transformed

domain returns us to a sparse representation.

In a number of situations, staying in the spatial domain may be highly desirable. The most common rea-

son for favoring a transform-free method is to facilitate enforcing boundary conditions. If we wish to work
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.01.007

* Corresponding author.

E-mail address: lyons@math.ucsb.edu (W. Lyons).
1 Partially supported by NSF grant number CCR-0204388.
2 Partially supported by NSF grant number DMS-0311911.

mailto:lyons@math.ucsb.edu

174 W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191
on a non-periodic problem and specify Dirichlet or Neumann boundary conditions, it is natural to work in

physical space. However, if we do so our Chebyshev derivative operator will be a full matrix and the size of

problem we can tackle will be severely reduced.

In this paper, we introduce a new method for efficiently solving spectral discretizations of partial differ-

ential equations (PDEs) while staying in the spatial domain. We will develop our ideas in the context of
linearly implicit (LI) methods. This approach is currently the most popular choice for PDEs with low-order

non-linear terms and higher-order linear terms.

A recent paper by Kassam and Trefethen [9] includes a survey of methods being applied to treat prob-

lems of this kind and indicates that LI methods may not always be the best choice. As such, we also discuss

how the ideas we propose here can be used to similar advantage in integrating factor (IF) and exponential

time differencing (ETD) methods. These methods are of recent vintage but show great promise.

Linearly implicit (also known as implicit–explicit or IMEX) methods are widely used and have a history

going back at least to 1980. In these early papers we find a full description of the method [15] and some
results on stability [33]. More recent treatments include [2,3]. The defining feature of LI methods is that

they employ an implicit discretization of leading order linear terms and an explicit discretization of the

remaining, typically non-linear terms. Thus, if the inversion of the resulting linear system can be accom-

plished at a low cost then one obtains an efficient method in which the leading order timestepping stability

constraint has been eliminated. Unfortunately, the solution to such linear systems is costly for Chebyshev

collocation and quite generally for spectral discretizations when remaining in the spatial domain.

Here, by employing an appropriate representation of the differential operator on the spatial domain, we

can use an implicit time discretization of the leading order linear operators and apply direct, fast, non-iter-
ative methods to solve the resulting linear system at each timestep. This allows us to remove the highest

order timestepping constraint while retaining nearly linear scaling in the number of collocation points.

We illustrate this strategy in the particular case of functions on a finite interval, discretized by collocation

on the Gauss–Lobatto points.
2. Basic strategy

The basis of our approach is a representation of differential operators. In transform methods no explicit

representation of the derivative operator is needed, as the coefficients of the derivative are generated

through recursion. In the spatial domain, the derivative has a matrix representation and classically this

is what is used in physical space numerical methods.

However, the matrix representation of the derivative is not sparse, symmetric or even normal (see [17]). It

is computationally expensive to work with such matrices. The matrix of the derivative is also ill-condi-

tioned, so even a brute force solution of a discretized differential equation using iterative methods will

be very expensive.
In our approach we represent the Chebyshev derivative operator not with a matrix, but with a hierar-

chically semi-separable representation (also known as a rebus). This is a representation closely related to

the fast multipole method (FMM) in the form developed by Starr and Rokhlin [31] and by Yarvin and

Rokhlin [34]. Similar developments along these lines have since been made by Beylkin, Coult and Mohlenk-

amp in [7] and Beylkin and Sandberg in [10]. The formulation we adopt here was introduced by Chandr-

asekaran and Gu in [13]. We place this representation in historical context in Section 3 and proceed to

review the definition and properties of the representation below in Section 4.

Our approach to solving the PDEs is as follows. Starting from the governing equations, we discretize the
time dependence using an implicit discretization of the leading order linear terms. This avoids high stability

restrictions on the allowable time step. Then, we introduce the rebus representation of the spectral deriv-

ative operator and use fast algorithms to generate the needed higher order linear operator for a timestep.

W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191 175
After this, the linear system that results from the implicit or semi-implicit time discretization and the appli-

cation of the boundary conditions is solved in rebus form using specialized fast algorithms.
3. Relations to earlier work

As noted by Golub and Van Loan [19] good matrix algorithms rely on exploiting structure. Although the

methods being presented here are new, the structure they exploit has been noted before. A number of

representations and algorithms have arisen to take advantage of the same properties.

We will briefly compare and contrast the current approach with others which rely on the same principles.

We will try to emphasize the differences between each approach and the one advocated here.

3.1. Tree codes

For N-body problems of the type encountered in astrophysics, computational chemistry, plasma physics

and other fields relying on particle simulations, the cost of evaluating the mutual interactions grows as N2

and realistic problems are frequently intractable.

In response to this, a number of procedures were created to reduce the burden of these calculations.

Notable amongst these were the Barnes–Hut tree code [5], Appel�s method [1] and particle-in-cell methods

and their descendants, the particle–particle, particle–mesh methods [22].

The underpinning of these methods was the observation that although short range interactions can be
arbitrarily complex, the long range effect of a cluster of particles will be relatively smooth. An alternative

viewpoint is that the matrix of the interaction will have low rank away from the diagonal or will contain off-

diagonal blocks that can be accurately approximated by low rank matrices.

Structured low rank representations lie behind the tree codes and are rediscovered periodically. They are

methods for fast summation and all of the applications rely on the fast evaluation of matrix–vector prod-

ucts. In N-body particle interaction, we are summing the contributions to the potential from N sources and

the application is direct.

An extension of fast summation is the solution of linear systems. By using conjugate gradient or other
iterative methods, the rate-determining step in the solution of a linear system becomes the rapid evaluation

of matrix–vector products. Thus tree codes may be used to solve linear systems, notably those arising from

PDEs.

3.2. Fast multipole methods

The FMM was originally introduced to solve integral equations [28]. A different formulation was used as

a fast summation method [20] and it is this algorithm that has had the most impact and is generally known
as the FMM.

The work of Rokhlin and collaborators on FMM structure resulted in a rich complex of ideas dealing

with much more than fast summation. After the initial application to integral equations, it was applied to

evaluating conformal mappings [27], two-point boundary value problems [31], ordinary differential equa-

tions [30], 2-dimensional integral equations in scattering theory [29], the wave equation [14] and Laplace�s
equation [23].

Of particular interest to us here is Rokhlin and Starr�s work presented in [30,31]. Here, the authors use a

recursive partitioning to solve an integral equation. The apparatus developed is analytic in nature and spe-
cific to integral equations. The development demonstrates that integral equations can be solved efficiently

using a recursive partitioning. The off-diagonal blocks in this partitioning are shown to have low rank.

However, unlike the partitioned low rank representations in Section 3.1, the representations in each block

176 W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191
are not independent, but are related in a multilevel framework, where information may be projected or

interpolated between fine and coarse scales.

The twin ideas of a partitioned SVD representation and a full FMM interaction tree arise again in Rokh-

lin and Yarvin�s work [34].

These ideas are further developed by Beylkin, Coult and Mohlenkamp in [7], where the authors use a
recursive block decomposition to enable them to work efficiently with spectral projection operators. This

is the same block decomposition used in Rokhlin�s work that also arises in rebus methods. They prove spec-

tral projection operators to have a compact representation in terms of low rank blocks. Further, they de-

velop an efficient algorithm to multiply together two matrices stored in this form. The algorithm used is

similar to that employed for multiplying in non-standard wavelet form [18].

3.3. Rebus methods

Our motivation in developing rebus-based methods was that all of these applications of the FMM were

exploiting the same underlying structure. Although the expansions and representations used in the FMM

papers cited above were problem specific, the underlying ideas were consistent. By confining ourselves to a

specific recursive block partitioning we further develop the ideas of the FMM to allow an efficient repre-

sentation of differential and integral operators in general, as opposed to treating specific operators.

By this restriction to a specific FMM tree (which is what a rebus is), we lose the flexibility of the full

FMM but it becomes possible to develop a full algebra. Thus we can implement a fast rebus–vector mul-

tiplication, rebus–rebus multiplication, perform LU factorization and code direct rebus solvers. The rebus
structure is a hybrid, retaining enough FMM structure to design fast algorithms but simplifying matters

enough to make algorithms algebraically tractable.

All the algorithms developed to operate on this structure share some desirable features. They are

intrinsically parallel since calculations happen locally and are propagated in discrete stages through

the tree. The algorithms are also intrinsically multiresolution. All have recognizable ‘‘upsweep’’ and

‘‘downsweep’’ recursions corresponding to interpolating or projecting information to a different scale.

All are easily formulated as adaptive algorithms, where refinement is performed only locally and as

needed. An example of this in the case of the solution of linear systems is found in Chandrasekaran,
Gu and Lyons [12].
4. Rebus representation

The rebus, or hierarchically semi-separable representation of a matrix, was described in [13] and forms

the basis for the numerical method being described. We give a brief review here to establish notation.

4.1. Definition

A rebus representation is based on a hierarchical block structure and may be described in terms of block

partitioning. Given any dense matrix we consider it as a block 2 · 2 matrix where the blocks are of arbitrary

size and in particular need not all be the same size.

We use the notational device of preceding the usual positional subscripts with the ‘‘level’’ of splitting, so

the original dense matrix A can be thought of as A0;11. That is, the (1,1) block of the matrix partitioned zero

times. Using this notation and block partitioning we get
A0;11 ¼
A1;11 A1;12

A1;21 A1;22

� �
:

W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191 177
The off-diagonal blocks are factored and stored as
A1;ij ¼ U 1;iB1;ijV H
1;j for ði; jÞ ¼ ð1; 2Þ; ð2; 1Þ;
where VH denotes the Hermitian conjugate of V.
The notation here should be reminiscent of that conventionally used for the singular value decomposi-

tion (SVD), A = URVH. The purpose of the factorization is to allow us to take advantage of rank deficient

blocks. However, it is in fact not a simple SVD, as the global structure places constraints on which factors

are allowable.

We repeat the above process for each of the diagonal blocks. That is, we subdivide A1;11 and A1;22 to get
A1;11 ¼
A2;11 A2;12

A2;21 A2;22

� �
and
A1;22 ¼
A2;33 A2;34

A2;43 A2;44

� �
:

The off-diagonal blocks of these matrices are again factored in the form
A2;ij ¼ U 2;iB2;ijV H
2;j for ði; jÞ ¼ ð1; 2Þ; ð2; 1Þ; ð3; 4Þ; ð4; 3Þ:
The new diagonal blocks are again split, and this process continues down to some lowest level where they

are simply stored as dense matrices.

For an appropriate factorization, this will enable us to use a low-rank representation of the off-diagonal

blocks. The resulting block structure is illustrated in Fig. 1. The benefit of this structure for representing

differential operators is demonstrated in Section 4.2.
Fig. 1. Block structure used to generate rebus representation.

178 W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191
Together with the (low-rank) representations of the off-diagonal blocks, there is a tree structure as

follows: we do not store the factors Uk;i and Vk;i at every level. Instead, we store them at some lowest level

only, and then store intermediate quantities Rk,i and Wk,i which satisfy the relationships
Uk�1;i ¼
Uk;mRk;m

Uk;nRk;n

� �
; V H

k�1;i ¼ W H
k;mV

H
k;m W H

k;nV
H
k;n

� �
; ð1Þ
where level k � 1 is the parent of level k. This allows us to store only the ‘‘lowest level’’ factorizations and

small transformations which relate them to the factors at the next highest level.

To ensure that this is possible, we must relate the factorizations at each level of the rebus. It is for this
reason that we cannot simply take a SVD of each block at each level. The Uk;n at the lowest level must not

only provide a basis for the column space of Ak;nm, it must provide a basis for the column space of the whole

row n of Ak (excluding the diagonal block).

Once we have performed this recursive splitting and factorization we obtain the components of the re-

bus: the diagonal blocks Dk, the lowest level factors Uk and Vk and a binary tree of low rank factors R, W

and B. This representation allows us to efficiently recover the original matrix, while exposing any low-rank

structure.

4.2. Rebus representation of differential operators

The rebus is a hierarchical low-rank representation of a linear operator. It is especially suitable for inte-

gral and differential operators.

To show the extent to which we may expect to realize savings in storage and number of operations, con-

sider the hierarchical partitioning of a 1024 by 1024 Chebyshev derivative matrix illustrated in Fig. 2. It is a
Fig. 2. Rank structure of the Chebyshev derivative matrix with shading proportional to rank.

W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191 179
special case of the partitioning described in Section 4.1. In this example each partition takes exactly half the

rows or columns.

The shading of the figure is proportional to the percentage of full rank, with black squares being full

rank. Table 1 shows the rank at each hierarchical level.

The goal of the rebus representation is to keep the derivative operator, the timestepping operator and all
related quantities in rebus form at all stages of the numerical method. This allows us to use the low-rank

representations for these blocks and use fast algorithms designed to take advantage of the binary tree struc-

ture to achieve large computational savings.

The details of the algorithms used for constructing the representations and solving the resultant systems

are available elsewhere and are not the subject of this article. Details of these algorithms can be found in

[12,13].
5. Numerical method

We consider a general PDE that can be written in the form
Table

Rank

N

512

256

128

64

32

16

8

4

ut ¼ Lðx; t; uÞ þNðx; t; uÞ; t > 0; x 2 X; ð2Þ

where L and N represent a linear and a non-linear differential operators, respectively. Inhomogeneous

terms, if present, are also included in N. The domain X is bounded and the equation is supplemented with
appropriate initial and boundary conditions. We also assume that the leading order terms at small scales

(e.g. terms with the highest order derivatives) are linear and thus contained in L.

With a collocation method the computational cost of incorporating boundary conditions of Dirichlet,

Neumann or mixed type is low. It is most convenient, in this approach, to use boundary bordering as

described by Boyd in [11].

To illustrate ideas, let us consider the particular case where the right hand side of the differential equa-

tion can be written as the sum of a linear elliptic operator and a non-linear operator, possibly including an

inhomogeneous forcing term:
ut ¼ r � ðaruÞ þNðx; t; uÞ; ð3Þ

where a > 0. This type of equations arises routinely as diffusion-convection equations in computational

fluid dynamics or reaction-diffusion problems in chemistry. As explained earlier, a popular approach in this

situation is to treat the elliptic part implicitly and the other terms explicitly. The reason for this LI approach

is that the elliptic term is the stiffest and gives rise to severe timestep constraints if treated explicitly. The

remaining non-linear terms are treated explicitly as their implicit discretization would result in a non-linear
system which would be difficult and costly to invert.
1

structure of the 1024 · 1024 Chebyshev derivative matrix

Rank of N · N block % of full rank

11 2.1

10 3.9

10 7.8

9 14

8 25

7 44

6 75

4 100

180 W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191
Terms that we are treating explicitly need to be evaluated before we proceed to solve the system. Since

the rebus representation of the derivative is already being computed, it may be applied cheaply to a vector

by using a rebus–vector multiply as described in [13] to efficiently calculate any derivatives in the explicit

term. This would be needed for example in the common case of an advective term. Here we focus on

the problem of integrating implicitly the stiff elliptic term without leaving the physical space.

5.1. Elliptic problem

The timestepping solution of PDEs of this type reduces to solving an elliptic equation at each timestep.

Since we are in the spatial domain, imposing the boundary conditions at each timestep introduces no extra

complications.

In most spectral methods, a finite difference discretization is used in time. As the most simple example,

consider a first-order (backward Euler) discretization. Higher order schemes in time can be easily imple-
mented with exactly the same approach. The time discretization is
1

Dt
ðuðx; t þ DtÞ � uðx; tÞÞ ¼ Lðx; t þ Dt; uÞ þNðx; t; uÞ:
To step our solution forward in time with given, time-dependent Dirichlet boundary conditions we solve
LDtuðx; t þ DtÞ ¼ uðx; tÞ þ DtNðx; t; uÞ; ð4Þ
where LDt ¼ I � Dt � L.
The solution at each timestep consists of the following steps.

1. Generate the rebus representation of D, the Chebyshev derivative operator.

2. Use the fast rebus–rebus multiplication algorithm to generate the relevant Dn operator.

3. Use scaling and diagonal updates to generate LDt. Algorithms for this are presented in Sections 5.2 and
5.3.

4. Evaluate the non-linear term N(x,t,u) using u and possibly the rebus representation of D.

5. Add the right hand side terms to obtain a single, vector-valued, right hand side.

6. Apply boundary conditions via an efficient leaf-update of LDt, described in Section 6.

7. Solve the system using the algorithm presented in [12].

Step 1 may of course be done only once for a given set of nodes and may then be stored. In nearly all

problems of interest, step 2 may be done as a preprocessing step and need not be repeated. For a constant
coefficient equation with uniform timesteps, step 3 may also be taken out of the loop. In this special case we

need only evaluate the non-linear term, update boundary conditions and solve.
5.2. Rebus scaling

Consider the operation A! c Æ A. For a matrix representation of A we clearly update the matrix

elements ai,j! c Æ ai,j. Now consider the equivalent rebus operation. We will use the notation of Section 4.1.

The interaction of each subdomain with each other subdomain is represented either by DK;i or the prod-
uct Uk;iBk;i;jV H

k;j, for some k. U and V themselves satisfy the relations (1).

Thus, the structure can correctly be scaled by
DK;i ! c � DK;i for i ¼ 1; . . . ; 2K
and

W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191 181
Bk;i;j ! c � Bk;i;j for k ¼ 1; . . . ;K and ði; jÞ ¼ ð1; 2Þ; ð2; 1Þ:

All other factors of the rebus remain unchanged.

5.3. Diagonal updates

The backward Euler timestepping discretization of the PDE is given by
ðI � Dt � LÞuðx; t þ DtÞ ¼ uðx; tÞ þ DtNðx; t; uÞ
and in this case the operator we must represent as a rebus is
L ¼ I � Dt � L:

Given the rebus representation of L, forming this operator requires a scaling by �Dt, followed by a diag-

onal update.

Every off-diagonal block of I � Dt Æ L is equal to the corresponding block of �Dt Æ L. Thus the update

need operate only on the blocks DK;i. But these are exactly the blocks which are stored explicitly as normal

matrices in our rebus representation.

Thus, the structure can be correctly updated by
DK;i ! I � DK;i for i ¼ 1; . . . ; 2K ;
where DK;i are the diagonal blocks of our scaled rebus.
6. Boundary conditions by boundary bordering

The main reason for pursuing these methods is to efficiently treat PDEs with non-periodic boundary

conditions. It is appropriate then, to consider how to enforce various boundary conditions in the rebus

formulation.

As discussed by Boyd in [11], the most robust and flexible method of imposing physical boundary
conditions for a matrix formulation of Chebyshev collocation is boundary bordering. The principle of this

method is to allocate m rows of the matrix to explicitly imposing the m boundary conditions, of whatever

type. Thus, to impose Dirichlet boundary conditions on a discretization of a second order equation in one

dimension we collocate at N � 2 interior points of the interval and use two rows of the matrix to impose

boundary conditions.

The equivalent process for a rebus proceeds as follows. Instead of using the first two rows of the matrix

we need to respect the spatial structure and operate on the first and last rows, corresponding to the bound-

ary positions. We can then accomplish the bordering. However, the rows that need to be replaced are not
readily available, as they are split between a number of blocks, which are themselves factored.

The process is less straightforward than bordering a matrix, but is not difficult. The process may be

broken down as follows.

� Initialize by setting the m required rows to zero within the rebus.

� Form the required boundary conditions as dense matrix rows.

� Construct a low-rank product expressing the desired boundary conditions in matrix form.

� Use Algorithm 6.4 to add this low rank product to the rebus.

Thus the procedure amounts to zeroing out m rows of the rebus and performing one rank-m addition.

182 W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191
6.1. Initialization

We may modify the first and last diagonal block, DK;1 and DK;N directly, as we would the corresponding

matrix. However, the remaining factors contributing to the border rows still need to be set to zero. (We

tacitly assume here that all the border rows can be contained in the rows covered by these blocks. The pro-
cedure below extends to the more general case).

We use the fact that each other element of the first row is the first row of a block Uk;iBk;i;jV H
k;j, for some k,

and that all of the Uk;i are generated from the lowest level UK;i via the relation
Uk�1;i ¼
Uk;mRk;m

Uk;nRk;n

� �
: ð5Þ
Our requirement is that
Xp
l¼1

Xq
m¼1
ðUk;iÞ1;lðBk;i;jÞl;mðV H

k;jÞm;j ¼ 0
for all j for each block. Thus it is sufficient to require that
ðUk;1Þ1;l ¼ 0 for all l for all k:
And from the recursion relation (5) it is sufficient to enforce
ðUK;1Þ1;l ¼ 0 for all l
to achieve boundary bordering of the first row.

Similarly, we impose analogous conditions on all other rows that are to be used for boundary conditions.
For example, we would use
ðUK;N ÞNK ;l
¼ 0 for all l
for boundary bordering on the final row.

6.2. Boundary conditions in matrix form

We now generate the boundary rows that we would border with in a matrix method.

For Dirichlet boundary conditions or conditions on any linear combination of endpoint or interior
values in the form
XN
j¼1

xjuðxjÞ ¼ a;
where xj are our Chebyshev nodes, we simply border with the vector of weights x. In the Dirichlet case this
amounts to a single 1 in the first or last position.

Alternatively, we may be presented with Neumann conditions or conditions on some linear combi-

nation of derivatives at the endpoints or interior points. Our boundary condition then would have the

form
XN
i¼1

xiu0ðxiÞ ¼ a:
Let D be the Pseudospectral derivative operator. Using the matrix representation of the derivative, our

condition is equivalent to

W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191 183
XN
j¼1

XN
i¼1

xiDij

 !
uðxjÞ ¼ a: ð6Þ
Thus, we border our matrix with a linear combination of rows from the derivative matrixD as determined by

the weightsx. In the case of a simple Neumann condition at x = �1, we would border with the first row ofD.

For more exotic boundary conditions or constraints the treatment is equally straightforward. An inte-

gral condition may be represented by any suitable Chebyshev quadrature scheme, for example the Gaussian

or Clenshaw–Curtis scheme. Since quadratures are expressed in terms of weights as
XN
j¼1

wjuðxjÞ ¼ a;
the correct boundary row is again simply the vector of weights w.

6.3. Formulation as a low-rank product

Given our m boundary conditions, we now need to position them appropriately in our rebus. For Dirich-

let conditions in one dimension, for example, we should respect the geometry of the problem and border on

the first and last rows. Similarly for Neumann conditions. The treatment of more exotic conditions is less

obvious but should be guided by attempts to preserve locality in the rebus structure.

Putting our m boundary conditions together into an m by n matrix B, we then write a simple n by m

permutation matrixP so that the productPB contains the rows in their chosen position relative to the rows

in the rebus.

These are the same rows that were initialized in step 6.1 and should also have the corresponding value of
the condition a on this row on the right hand side of our rebus equation.

6.4. Low-rank addition

It remains to combine the initialized rebus with the boundary conditions. We can do this using an

efficient algorithm for a low-rank update of a rebus.

Consider the problem of adding the product ACT to a rebus. As in Section 4 we will name the compo-

nents of the rebus as follows: diagonal blocks Dk, the lowest level factors Uk and Vk and a binary tree of low
rank factors R, W and B.

We first partition the columns of A and C commensurately with the rebus.
A ¼ A0 ¼
A1;1

A1;2

� �
¼

A2;1

A2;2

A2;3

A2;4

0
BBB@

1
CCCA ¼ � � � ¼

Ak;1

..

.

Ak;2k

0
BB@

1
CCA
and similarly for C.

At the kth level we need to represent Dk;i þ Ak;iC
T
k;i for j = 1,. . .,2k and Uk;iBk;i;jV T

k;j þ Ak;iC
T
k;j for

(i,j) = (2l,2l � 1),(2l � 1,21), for l = 1,. . ., 2k� 1.

The off-diagonal blocks can be updated by assigning
Uk;i Uk;i Ak;ið Þ; V k;j V k;j Ck;jð Þ; Bk;ij
Bk;ij 0

0 Im

� �
;

where m is the rank of the product ACT.

184 W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191
It remains to treat the diagonal blocks. These are either dense matrices or each is a rebus with one fewer

levels than the case just treated. If a block is a dense matrix (a zero-level rebus) we simply perform the

addition
Dk;i Dk;i þ Ak;iC
T
k;i:
If the block is a rebus with one fewer levels, we recursively apply the original procedure until all the diag-

onals have terminated with a dense block.

So using a straightforward recursive algorithm we can efficiently add a low rank matrix to a rebus.
7. Limitations and extensions

7.1. Conditioning of Chebyshev derivative operators

Working with Chebyshev collocation methods with many collocation points, high order derivatives and

multiple dimensions is a numerically dangerous proposition. The methods presented in this paper aim to

make certain types of calculation much more efficient. However, the numerical considerations of roundoff

error and ill conditioning remain.

It is well known that the discretization of the derivative operator on Chebyshev nodes gives rise to an
ill-conditioned matrix. As N, the number of discretization points, increases, the condition number of the

derivative matrix D grows with O(N2). Similarly, the condition number of the second derivative operator

grows with O(N4). As the order of the linear term or the dimension increases, this can quickly become

unmanageable.

For example in a Kuramoto–Sivashinsky equation [35] we would have an O(N8) condition number in 1d

or O(N16) in 2d. If we are working with 16 digits of accuracy then at a grid size around N = 102 we can

expect our answer to contain no meaningful digits. In a two dimensional simulation we cannot expect accu-

racy on any grid at all.
Dealing with this issue is part of using pseudospectral Chebyshev methods and there is a considerable

literature dealing with it.
7.1.1. Classical approaches

In the literature, there are a number of well known strategies to improve the condition number and accu-

racy of pseudospectral derivative matrices.

Numerical evaluation of the matrix representation of the derivative is subject to serious roundoff

errors, especially near the boundary points. Bayliss shows how a simple adjustment to the matrix, cho-
sen to ensure that constant functions lie in the null space of the matrix, can improve this [6]. It is also

possible to use alternate formulae to generate the matrix elements, as in Tang and Trummer [32] in

order to avoid the cancellations leading to numerical error. Each of these methods can improve the

accuracy of the matrix by a few orders of magnitude. The scaling of the condition number is unfortu-

nately not improved.

In a series of papers Heinrichs [21] described a specific basis recombination strategy to improve the con-

dition number of Dk to order Nk. This strategy is also treated by Boyd in [11]. There is also the mapped

Chebyshev approach introduced by Tal-Ezer [24] and further studied in [16]. This also reduces the condi-
tion number of the kth order derivative to O(Nk).

W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191 185
7.1.2. Extended precision

The most straightforward way to keep ill-conditioning from interfering with calculations which require

high precision is to take advantage of extended precision floating point numbers. These are now available

on a number of architectures and supported by many compilers [4].

Using quadruple precision allows us to, for example, calculate on a 100 by 100 grid using Chebyshev
collocation and still retain 16 digits of accuracy. In a less extreme case, if 8 digits sufficed, we could use

1000 Chebyshev nodes in each direction.

Calculating at extended precision incurs its own costs and does nothing to mitigate the poor numerical

behavior of the underlying problem. However, it does keep numerical errors at bay without requiring any

extra algorithmic or analytic complexity. Thus for practical problems that are otherwise intractable it offers

a realistic approach.

7.1.3. Alternate basis sets

It is well known that other global basis sets, while lacking the optimality properties of the Chebyshev

polynomials, lead to much better conditioned derivative operators. Depending on the specifics of the prob-

lem it may be advisable to work in a basis of Legendre or Jacobi polynomials.

We note that the methods developed here for Chebyshev collocation methods are equally applicable in

any other basis. The low rank structure we are taking advantage of stems from the smoothness of the oper-

ator itself, not the basis in which it is represented.

7.1.4. Iterative refinement

If we are only able to obtain relatively low accuracy, but have our system in factored form it may be

desirable to employ a few cycles of iterative refinement. By calculating our backward error and performing

another fast solve we may extend the accuracy of the solution.

7.1.5. Exploiting limited precision

We can also use the fact that our final accuracy is known to be limited to our advantage. Whether it is

due to the order of our timestepping scheme or due to the conditioning of the differential operator, we often

know that we are working to less than machine precision.
Similar to a wavelet representation, the rebus is a thresholded representation and captures the operator

to arbitrary but finite precision. The thresholding is similar to that of an economy SVD, where basis vectors

corresponding to small singular values are discarded.

If we know that our solution will not have more than, say, 10 digits of accuracy we can threshold more

aggressively, discarding factors of the off-diagonal blocks corresponding to singular values smaller than

10�10. This results in lower rank representations of the off-diagonal blocks and hence faster computation

speed.

By remaining aware of the limitations imposed on the accuracy of our solution in timestepping methods
we may at least dispense with unnecessary computations and work with the relevant components of our

problem. If only very low accuracy is required, as would be the case for a preconditioner or an iterative

refinement step, we may work with a coarse approximation to the operator and proceed through the

calculations very rapidly.

7.2. Alternate timestepping schemes for stiff non-linear PDEs

LI methods are a popular choice for solving PDEs with a non-linear contribution and a stiff linear term.
However, there are other methods available. Kassam and Trefethen compare the available schemes in [9],

and suggests the IF and ETD schemes may be superior choices. Methods of the ETD type appear to have

been introduced by Beylkin, Keiser and Vozovoi in [8].

186 W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191
These alternate methods rely on the observation that the linear part of the equation can be solved exactly

by a matrix exponentiation. As ever, a suitable explicit step is sought for the non-linear terms so as to avoid

an iterative solution of a non-linear system.

To take a timestep using this type of method, the linear term must be inverted, exponentiated or

raised to a power. In the scheme favored in [9], (ETDRK4, an exponential time differencing technique
based on the fourth order Runge–Kutta scheme) all of these must be done. This poses no particular

problem if we have periodic boundary conditions in one dimension. However, if this is not the case

and we cannot diagonalize our operator we must be able to efficiently invert, exponentiate and multiply

a full matrix.

We will sketch how the rebus methods described in Section 5 extend to timestepping with these modern

methods.
7.2.1. Matrix exponentiation

In calculating the timestep in the IF and ETD schemes, matrix exponentiation plays a central role. The

IF which multiplies both sides of the PDE is of the form eLh, and needs to be calculated. If the linear oper-

ator is constant, it only needs to be calculated once. If we are working in Fourier space, the operator can be

rendered diagonal and again, the calculation is straightforward. Note that the exponential will itself not be

sparse.

The more difficult case is that of a function L on a finite domain with physical boundary condi-

tions. If a pseudospectral Chebyshev discretization is used, the matrix exponential becomes very expen-

sive to evaluate. It is an O(N3) operation and even for relatively modest N may be the rate
determining step.

The matrix exponential is most often computed using the scaling and squaring algorithm favored

by Golub and Van Loan in [19] and in the review papers [25,26]. The calculation is accomplished

with matrix multiplications and a matrix solve and is therefore easily implemented for the rebus

structure.

With an O(N) matrix exponentiation, IF and ETD schemes could be applied to problems with a time-

varying linear operator and to large problems with non-periodic boundary conditions. A similar obser-

vation led to the introduction of ETD schemes in [8], where the authors demonstrated a sparse matrix
exponentiation for wavelet representations of strictly elliptic operators.
8. Numerical examples

The following section reports the results of applying these methods to a number of test problems. Since

conventional methods find the combination of non-periodic boundary conditions with many collocation

points the most problematic, we focus on such problems.
The implicit treatment of the diffusion terms corresponds to the conventional use of LI methods (see [3])

for the convection-diffusion or reaction-diffusion equations arising in chemical simulation. Such simula-

tions typically use a spectral discretization in space and face exactly the problem we address: efficiently

solving the equations arising from an implicit discretization in time.
8.1. Time-varying non-homogenous Dirichlet conditions

Consider the test problem of a diffusion equation applied to a Gaussian function.

Table

Conve

log2(Dt

�3
�4
�5
�6
�7
�8
�9
�10
�11
�12
�13
�14

W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191 187
ou
ot
¼ o2u

ox2
� 1 6 x 6 1; t P 0;

uðx; 0Þ ¼ expðx2Þ t ¼ 0;

uð�1; tÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1

t þ 1

r
exp

�1
4ðt þ 1Þ

� �
t > 0:

ð7Þ
Note that the Dirichlet boundary conditions are non-homogenous and time varying. This is the same kind
of boundary condition we would need to apply for a Dirichlet boundary control problem.

This mixed initial-boundary value problem has the exact solution
uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1

t þ 1

r
exp

�x2
4ðt þ 1Þ

� �
: ð8Þ
A second-order Crank–Nicolson scheme was employed for the time integration of the linear term and

this example does not have a non-linear term. To demonstrate that the current approach retains the sec-

ond order convergence expected of a Crank–Nicolson method we first refine our timestep on a fixed grid.

Table 2 demonstrates the effect of taking 2n steps for n = 3, . . .,14 on a collocation grid of 64 Gauss–

Lobatto points.

Assuming the error of the scheme is of the form kuðx; 1Þ � ûðx; 1Þk1 ¼ k � N�a, a regression of the data

determines a = 2.0 with R2 = 1.00. As expected, our implementation of the Crank–Nicolson scheme is sec-

ond-order.
To demonstrate the scaling properties of the method, now fix Dt and refine our collocation grid. As

the spatial accuracy is already exponentially convergent, our accuracy is limited by the fixed timestep

size. We are refining the grid in order to show the desirable scaling properties of the method as N

grows.

We solve Eq. (7) from t = 0 to t = 1 for a changing number of collocation points while maintaining our

error kuðx; 1Þ � ûðx; 1Þk1 6 10�5. We report timings and uniform errors with Dt = 0.01.

A regression analysis of the data in Table 3 shows the cost to scale as N1.3 with R2 = 1.00. This exponent

is not optimal, as linear scaling can theoretically be achieved [13]. The performance is competitive with the
N log(N) currently possible for transform-based, diagonalizable problems. It is clearly superior to the N3

cost expected for non-diagonalizable problems (see Fig. 3).
2

rgence after N rebus timesteps on 64 Chebyshev nodes

) Dt Error

1.25E�01 3.29E�05
6.25E�02 1.07E�05
3.13E�02 1.93E�06
1.56E�02 4.87E�07
7.81E�03 1.22E�07
3.91E�03 3.04E�08
1.95E�03 7.61E�09
9.77E�04 1.90E�09
4.88E�04 4.75E�10
2.44E�04 1.24E�10
1.22E�04 2.82E�11
6.10E�05 7.05E�12

≈

Fig. 3. Timings for 100 rebus timesteps on N Chebyshev nodes with linear and log scales.

Table 3

Timings for 100 rebus timesteps on N Chebyshev nodes

N CPU time (s) Error (e�6)
200 2.13 1.20

400 5.23 1.19

800 14.1 1.19

1600 38.5 1.20

3200 87.4 1.22

6400 213 1.44

188 W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191
8.2. Homogenous Neumann conditions

Having demonstrated the second order convergence of the method and the scaling of computational cost

with grid size, we now apply the method to a more challenging simulation. We timestep a reaction-diffusion
equation with a non-linear term and Dirichlet boundary conditions.

Consider the initial value problem for an Allen–Cahn equation of the form
ut ¼ �uxx þ u� u3 � 1 6 x 6 1; t P 0;

uðx; 0Þ ¼ sinð5px=2Þ t ¼ 0;

uxð�1; tÞ ¼ 0 t > 0:

ð9Þ
Eq. (9) has stable equilibria at u(x) = ±1 and an unstable equilibrium at u(x) = 0. It also demonstrates slow

dynamics, whereby metastable states may persist for relatively long periods before undergoing a rapid tran-

sition to a lower energy state [35].

In this case the linear term was integrated via a Crank–Nicolson scheme, the non-linear term via a

second order Adams–Bashforth scheme and the Neumann boundary conditions were enforced as described
in Section 6. Table 4 shows the computational time taken for different grid sizes.

− 1 − 0.5 0 0.5 1

− 1

− 0.5

0

0.5

1

x

u(
x)

− 1 − 0.5 0 0.5 1

− 1

− 0.5

0

0.5

1

x

u(
x)

Fig. 4. Initial condition and final (t = 127) state for the Allen–Cahn equation.

Fig. 5. Time evolution between the states of Fig. 4.

Table 4

Timings for 100 rebus timesteps on N Chebyshev nodes

N CPU time (s)

200 2.06

400 5.12

800 13.9

1600 35.5

3200 86.7

6400 206

W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191 189

190 W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191
A regression of the data in Table 4 shows that the scaling exponent has remained 1.3, as in Section 8.1,

again with R2 = 1.00. The addition of Dirichlet boundary conditions and a non-linear term has not altered

the scaling behavior of the method.

The initial and final states are shown in Fig. 4 and the evolution of the state is shown in Fig. 5. Around

the midpoint of this evolution we observe the transition out of the metastable state. High order methods are
desirable for tracking transitions such as this. As the solution is stable over relatively long periods, an adap-

tive step size would also be appropriate for this kind of problem. This is straightforward to implement in a

rebus scheme. Whatever timestep is needed, the relevant operator is still generated via fast operations from

the derivative rebus, which is already known.

All experiments were carried out on a dual 1 GHz PowerPC G4 with 2MB L3 cache per processor, and

1.5 GB RAM, using vendor supplied BLAS in double precision. Only a single CPU was used.
9. Conclusion

In this paper, we demonstrate a new approach for efficient time integration of PDEs via Chebyshev spec-

tral discretization. By using a hierarchically semi-separable representation (a rebus) it becomes possible to

use an implicit discretization in time and still directly solve the resulting system of equations in physical

space. The cost is shown to scale at a rate which is competitive with the N log N cost of current fast methods

for periodic problems.

The fact that the method allows different types of boundary condition to be combined with a fast algo-
rithm for solution constitutes an advance over current methods. In situations where the problem cannot be

diagonalized or periodic boundary conditions imposed, these methods allow us to work efficiently with the

resulting non-sparse matrices. Nonperiodic problems arise frequently in practice.

These advantages, combined with the efficient handling of dense matrices which arise in other timestep-

ping methods, such as ETD, give these methods the potential to treat problems that may previously have

been intractable.
References

[1] A.W. Appel, An efficient program for many-body simulation, SIAM J. Sci. Stat. Comput. 6 (1) (1985) 85–103.

[2] U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations,

Appl. Numer. Math. 25 (2–3) (1997) 151–167.

[3] U.M. Ascher, S.J. Ruuth, B. Wetton, Implicit–explicit methods for time-dependent partial differential equations, SIAM J. Num.

Anal. 32 (1995) 797–823.

[4] D.H. Bailey, A portable high performance multiprecision package, Technical Report RNR-90-022, Moffett Field, CA 94035,

1992.

[5] J.E. Barnes, P. Hut, A hierarchical O(Nlog N) force-calculation algorithm, Nature 24 (6270) (1986) 446–449.

[6] A. Bayliss, A. Class, B.J. Matkowsky, Roundoff error in computing derivatives using the Chebyshev differentiation matrix, J.

Comput. Phys. 116 (1994) 380–383.

[7] G. Beylkin, N. Coult, M.J. Mohlenkamp, Fast spectral projection algorithms for density-matrix computations, J. Comput. Phys.

152 (1) (1999) 32–54.

[8] G. Beylkin, J.M. Keiser, L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput.

Phys. 147 (2) (1998) 362–387.

[9] A.-K. Kassam, L.N. Trefethen, Fourth-order time stepping for stiff PDEs, Technical Report NA-03/14, Oxford University, 2003.

[10] G. Beylkin, K. Sandberg, Wave propagation using bases for bandlimited functions, Technical Report APPM 518, University of

Colorado, 2003.

[11] J.P. Boyd, Chebyshev and Fourier Spectral Methods, Springer-Verlag, New York, 1989.

[12] S. Chandrasekaran, M. Gu, W. Lyons, A fast and stable adaptive solver for hierarchically semi-separable representations,

Technical Report UCSB Math 2004-20, U.C. Santa Barbara, 2004.

W. Lyons et al. / Journal of Computational Physics 207 (2005) 173–191 191
[13] S. Chandrasekaran, M. Gu, T. Pals. Fast and stable algorithms for hierarchically semi-separable representations, submitted for

publication.

[14] R. Coifman, V. Rokhlin, S. Wandzura, The fast multipole method for the wave equation: a pedestrian prescription, IEEE

Antennas Propag. Mag. 35 (3) (1993) 7–12.

[15] M. Crouzeix, Une mèthode multipas implicite-explicite pour l�approximation des èquations d�èvolution paraboliques, Numer.

Math. 35 (1980) 257–276.

[16] W.S. Don, A. Solomonoff, Accuracy enhancement for higher derivatives using Chebyshev collocation and a mapping technique,

SIAM J. Sci. Comput. 18 (4) (1997) 1040–1055.

[17] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, Cambridge, UK, 1996.

[18] D. Gines, G. Beylkin, J. Dunn, LU factorization of non-standard forms and direct multiresolution solvers, Appl. Comput.

Harmon. Anal. 5 (2) (1998) 156–201.

[19] G. Golub, C. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MA, 1996.

[20] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (2) (1987) 325–348.

[21] W. Heinrichs, Improved condition number for spectral methods, Math. Comp. 53 (1989) 103–119.

[22] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, Taylor & Francis, Inc, 1988.

[23] P. Jones, J. Ma, V. Rokhlin, A fast direct algorithm for the solution of the laplace equation on regions with fractal boundaries, J.

Comput. Phys. 113 (1) (1994) 35–51.

[24] D. Kosloff, H. Tal-Ezer, Modified chebyshev pseudospectral methods with O(N�1) time step restriction, J. Comput. Phys. 104

(1993) 457–469.

[25] C.B. Moler, C.F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev. 20 (4) (1978) 801–836.

[26] C.B. Moler, C.F. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev.

45 (1) (2003) 3–49.

[27] S.T. O�Donnell, V. Rokhlin, A fast algorithm for the numerical evaluation of conformal mappings, SIAM J. Sci. Stat. Comput. 10

(3) (1989) 475–487.

[28] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput. Phys. 60 (1985) 187–207.

[29] V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, J. Comput. Phys. 86 (2) (1990) 414–439.

[30] P. Starr, On the numerical solution of one-dimensional integral and differential equations, Technical Report YALEU/DCS/RR-

888, Yale University, 1991.

[31] P. Starr, V. Rokhlin, On the numerical solution of two-point boundary value problems II, Technical Report YALEU/DCS/RR-

802, Yale University, 1990.

[32] T. Tang, M.R. Trummer, Boundary layer resolving pseudospectral methods for singular perturbation problems, SIAM J. Sci.

Comput. 17 (1996) 430–438.

[33] J.M. Varah, Stability restrictions on second order, three level finite difference schemes for parabolic equations, SIAM J. Numer.

Anal. 17 (1980) 300–309.

[34] N. Yarvin, V. Rokhlin, A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics,

J. Comput. Phys. 147 (2) (1998) 594–609.

[35] D. Zwillinger (Ed.), Handbook of Differential Equations, Third ed., Academic Press, Boston MA, 1997.

	Fast algorithms for spectral collocation with non-periodic boundary conditions
	Introduction
	Basic strategy
	Relations to earlier work
	Tree codes
	Fast multipole methods
	Rebus methods

	Rebus representation
	Definition
	Rebus representation of differential operators

	Numerical method
	Elliptic problem
	Rebus scaling
	Diagonal updates

	Boundary conditions by boundary bordering
	Initialization
	Boundary conditions in matrix form
	Formulation as a low-rank product
	Low-rank addition

	Limitations and extensions
	Conditioning of Chebyshev derivative operators
	Classical approaches
	Extended precision
	Alternate basis sets
	Iterative refinement
	Exploiting limited precision

	Alternate timestepping schemes for stiff non-linear PDEs
	Matrix exponentiation

	Numerical examples
	Time-varying non-homogenous Dirichlet conditions
	Homogenous Neumann conditions

	Conclusion
	References

